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CHERENKOV WAKEFIELD ACCELERATORS:
RIPPLED WAVEGUIDES*.

Michael E. Jones, R. K. Keinigs, W. Peter and S. €. Wilkst
Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

The properties of using periodically rippled waveguides as wakeficld accelerators
are invesitgated. An analysis is perforined in the ultrarclativistic limit which accurately
predicts the amplitude, wavelength of the wakefield, and their dependences on waveguide
and drive beam parameters. These devices are found to have the properties that the
synchronous transverse wake vanishes, and the accelerating ficld is independent of the
radial position in the drift tube and independent of the radial profile of the drive beam
current. The effects of the nonsynchronous wakefields are discussed. Also. particle-in-cell
simulations arc performed which agree with the analysis and reveal self-consistent and
collective effed s in particle acceleration.

INTRODUCTION

One of the most promising new concepts for future high gradient relativistic electron
accelerators is the wakeficld accelerator idea. Wakefield accelerator concepts have several
advantages over conventional accelerators. Because the the beam to be aceclerated follows
immedintely behind the driving beam the accelerating ficld produced by the driving beam
has much less time to cause breakdown of the structure. Furthermore, in principle, the
etficiency with which energy is extracted from the drive beam can be made arbitrarily high
with proper shaping of the bean,

Although the properties of wakeficlds and their possible use for acceleration had been
known for some time, the idea of a wakefield nceelerator gnined popularity with the radial
wakefield transformer proposed by Voss and Weiland.! Because of the high limiting elee-
tric fields obtainable in plasmas and the relative simplicity of plasma waves, the coneept
of the plasmn wakefield accelerator (PWA) was proposed?? and subsequently received the
most attention. The plasma accelerators really exhibit advantages over other concepts only
nt frequencies greater than about 100 Ghz.! Unforiunately, the problem of producing n
suitnble drive beam becomes more difficult as the frequency is increased. Furthermore, be-
cause the drive beam is space-charge neutralized by the plasma, but not completely current
neutralized, it is difficult to maintain the drive beam pulse shape beenuse of the transverse
wake that is generated even for azimathally symmetrie drive beats.® Possible solutions to
the lutter problem have been studied®, However, if one is willing to consider more modest
aceelerating gradients (n few hundred MV/m), a class of wakefield aceelerators we call
Cherenkov wakefield accelerators are worth considering.

Cherenkov wakeficld aceelerators (CWA) use electromnguetic waves genernted by o
beam traveling through n slow-wave structure to necelerate a trailing bunch. Becnuse the
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beams propagate in vacuum in these deviees the transverse wake moving synchronously
with an azimuthially symmetric drive beam will cancel to 1/9%, where 5 is the relativis-
tic factor for the drive beam. Actually all wakefield field accelerators, other than the
PWA which uses electrostatic waves, can be classed as CWAs. However, we have in mind
particularly simple devices such as dielectrically filled waveguides and waveguides with
periodically varying walls. Other structures with similar properties include ferrite lined
waveguides” and periodic cavity structures.®

Recent work on dielectric structures have shown that wakeficlds can be excited in
these devices and they have the potential for being used as accelerators.? ' However, there
are uncertainties about the limits and effects of dielectric breakdewn at high frequency,
high field conditions. In this paper we consider a CWA which uses a rippled waveguide
as the slow wave structure. This device is expected to have better breakdown tolerances
than structures involving dielectries or ferrites. Furthermore, because the wall is smoothly
varying, there will not be the large field enhancements found at the edges of the holes in
periodic cavity structures.

The paper is organized as follows. A simple analysis of the wakefield in a rippled
waveguide 13 given in the next section and scaling laws are discussed for wakefield ac-
celeration. The following section describes the numerical model used to simulate these
devices, including self-consistent dynamies of the driving and accelerated beams. Finally
i deseription of the particle-in-cell simulations of representative cases is given.

ANALYSIS OF RIPPLED WAVEGUIDES

Analytic calculations of wakeficlds in periodic waveguides have been performed previ-
ously by several rescarchers.'' =1 In this section we caleulate the wakefield for the specifie
case of a sinusoidally rippled waveguide and discuss the implications for wakefield aceelera-
tors. Our analysis is essentially a simplified and specialized version of the work by Cooper,
Krinsky and Morton. '

We wish to find the wakefield in 2 Jong drift tube or waveguide whose wall radius ry,
varies periodically with axial position, z as

rw = all + es(z)) (n
where @ is the mean radius of the guide and s(2) = cos(kgz). The parameter e is the ratio
of the ripple depth to the mean guide radivs and will be assumed to be much less than
unity for the purposes of the analysis.

To caleulate the wakefield, we solve Maxwell's equations in an axisyimmetrie system
for the electrie field components b, and E, and magnetie field component By for a specified
drive beam source subject to the boundary condition that the tangentinl eleetrie field vnnish
along the wavegnide wall. This boundary coadition can be expressed as

{’N - \
E' = _f(l—bl" (‘—)’
dz
where Eq. (2) is evalunted at the radiad position given by Eq. (1). For ¢ « 1 this boundary
condition can be approximated by expanding Eq. (2) in a power series in ¢ about the menn
guide radius, a to obtain



E.(a) =~ — ea(s'E, u)+\DEa(”))

e2a? . ,0E, (a) + _BzEa(u))
28’ — S

+ .. (3)

where the prime denotes differentiation with respect to z. Furthermore the electric fields
can be expanded in powers of € so that

E = E(O) +GE(” +€2E(2) + .. (4)

Using Eq. (4) in Eq. (3), one obtains to second order in €

Eg())(u) =0
E("(a) = —a[s'E(a) 4+ sOE" (a)/0r):
E\¥(a) = —a|s'"E"(¢) + sQEV(c)/Or]
— a?s[«'0E\"(a)/0r + (8/2)0* E\")(a)/0r?) (5)
In the ultrarclativistic approximation, the lowest order solution for an infinitesimally

thin beam on axis with total current J(ct — z) is

F(U) =0,
E®™ = B = 2[(ct - z)/re. (6)

Using this expression in Eq. (5), the boundary condition for the first order axial electric
field becomes

EVa) = =2 I(ct = 2)/c. (7)

Defining the double Fourier transform in ¢ and 2 as

- 1 e e —i(kr=wt)
E(r k) = 2n)? /_m (H/_m dzc E(r, 2, ¢) (8)
one obtains from Maxwell's equations for a thin beam
1 - oMr Y . k'l 2
13(: 9E, )+ oK) E, = i ATk ()
rOr\ Or ¢ r we

Because of the (w - ke) in the source term we get no contribution from the ripght
hand side when we invert the transform. Therefore we only need to solve the homogeneons
form of Eq. (9). The solution to the homogeneous equation can be written ns



J()(KI‘)
Jo(ka)’

where 82 = w?/c? — k% and Jy is the Bessel function of zero order.

Because of the lincarity of Maxwell's equations, Eq. (10) is valid to all orders in €.
To apply it we must Fourier transform Eq. (7) using Eq. (8). For a uniform bunch with
current Iy and vanishing length L, such that the total charge @ = Iyl /. remains finite,
this procedure gives

E.(r k@)= E.(a k)

(10)

- ¥ ST )
Eykmkw)=Q%£wuh+hy—uq-Mw-kwc—wn. (11)

We can use this expression in Eq. (10) and invert the Fourier transforms to get the axial
field behind the driving bunch to first order in e

2Q¢ ad Jo(pnr/a)
E.(0r,z.t) x — )y = cos [k 2 = (hp = ky)et 12)
( " :4:“1 TS [ ( o)ct] (

where ky, = (ko/2)[1 = p?/(koa)?] and p,, is the nth zero of Jy(r). None of the modes have
a phase velocity equal to ¢, This means that the first order wakeficld is nonsynchronous
with an ultrarelativistic particle. The synchronous or accelerating ficlds appear only in
sccond order 1 e,

Fourier transforming the last equation in Eq. (5) we obtain

(1)
~(2) N / Ro(k + ko) OE;
Ef(akw)=- 3[\“‘2/( 6+ k)2 +1 5 —(a,k + ko, w)

1 (1)
_ ( AU(A '{()) ) - 1) aE ((1 h— k().k«‘)]

2T = (k — ky)? ar
+QL2MH¢°MV—4—M 2k )e - w)) (13)
whiere we have used
Ev(rikiw) = =it OF‘(y kW), (14)

wi/c? = k% Or
From Eq. (10) we obtain

IE" M Ji(xa) .
——07—((1 hiw) = ~AF (a, k, w),o(h”) (15)

Becanse of the delta fancetions in Eq. (11), when it is used in Eq. (15) and the vesult is
used in Eq. (13), there will be synchronous terms to second order in e, e terms involving,
d(ke —w). Furthermore, when these terms wre used in Eq. (10), the delta function will set



x = 0, so that we find E; for the synchronous modes will be independent of r. Thus we
obtain

EP(r k.w) = E®Na, ko)

iQkk2a[ Ji(K4a) Ji(r_a)
= o(he —w
4r [N+J0(N+a) + K-Jy(K-a) (ke )
+ nonsynchronous terms (10)

where k3 = —ko(kg £ 2k). Keeping only the synchronous terms we find after inverting the
Fourier transforins

E:(r.zt) = Qkyet Y kp coslky (=~ ct)] (17)

m=]

where ky, = (ko/2)[1 4 p2,/(koa)?]. Note the difference in sign from the definition of &, in
Eq. (12). Furthermore, the transverse wakeforce E, — By is zero for the synchronous fields,
because the E, and Dy ficlds which vary linearly with r cancel exactly in the ultrarciativistic
limit assumed in this analysis.

A point particle moving through the rippled waveguide will excite the fields given by
Eq. (12), which are first order in €. These fields arc thus larger than the synchronous fields
given by Eq. (17) which are second order in e. However, because they are nonsynchronous,
Lae first order ficlds alternately take energy from and give energy back to the particle and
the ficlds given by Eq. (17) are the lowest order approximation to the ficlds which can
extract energy from the particle and ean be used for acceleration.

As shown by Eq. (17), the wakefield for a point particle consists of an intinite set
of modes (different &,,,'s). Real electron bunches have finite length and we can obtain the
wakeficld for them by integrating over the Green's function given by Eq. (17). (Actually
the series in Eq. (17) does not converge and the expression only has physical meaning
when used as a Green's function to integrate over a finite length current distribution ) For
n beam with current distribntion I(ct — z) we find the synchrenous wake is given by

kye?
Ei(rg) = 2 5 A/ &' 1S eoslbm (¢ = ), (1)
m=1
where ¢ = et — 2. A particularly interesting current distribution is that of a lincarly
ramped beam with sharp cutoff, i.e., I(¢) = Iy¢/L for C < L, where L is chosen to be long
compured with the longeat mode (given by p,, = p) = 2.4). In this limit Eq. (18) gives

el o
E, = Tokye Z 1L (1 - COs kmC) (<L

« .
m=| m

E“-Miqinl- (¢-1L) (>L (19)
r~ - b UOTRNS .



We note from Eq. (1€ that the transformer ratio for cach mode is kL. However, the
higher order modes are not suppressed bekhind the beam as in other CWA concepts.” Oune
can still cbtain essentially a single mode wakeficld by tailoring the end of the drive beam
current to fall lincarly over a distance b << L. In this case the field behind the beam
becomes

E. Iykye? i 1 sl (¢ — L b)) "Cos[k (¢ — L)]) (20)
2 [of m=1 kmb cos m(Q ] m Q ’ -

For the modes with k,,b << 1 this expression reduces to that in Eq. (19). but the medes
with &, b >> 1 are suppressed.

For the casc of a single mode, we find from Eqs. (19) or (20). that the amplitude of
the accelerating wakefield is given by

E. ~ MU—GQ = BO&Io(kA)ko(uml_])52 (21)
c m

This amplitude is independent of the radial shape of the driving beam, but depends only on
the peak current Ip. It increase lincarly with kg, which means shorter wavelength ripples in
the waveguide wall produce larger wakefields. Furthermore, it depends only indirectly on
the radius of the waveguide through the relative ripple amplitude e. This parameter is the
strongest leverage in obtaining a large field because of it's square dependence. Therefore,
e should be made as large as possible. Of ccurse the analysis is only valid for € << 1 and
increasing € makes the waveguide more susceptible to breakdown.

Unfortunately, the amplitude of the fields indicated by Eq. (21) are somewhat modest
by plasma wakefield standards for reasonably sized waveguides. However, in the limit
kya >> 1, we see from the definition of k,, below Eq. (17), that the lowest order modes
become degenerate, i.e., ky, = ko/2 for all m such that (p,, /kea)? << 1. This means that
instead of a single term in the sum in Eq. (20), we can get several. But because all the
modes have the same wavelength this just multiples the amplitude of the wakeficld given
in Eq. (21) by the number of modes which are degenerate.

PARTICLE-IN-CELL SIMULATION METHOD

Numerical simulation of the wakefields and wakefield acceleration in rippled waveg-
uides were performed using the particle-in-cell model ISIS. The algorithms were generalized
to include a nonorthogonal coordinate system which had boundaries which conform the
waveguide wall. The numerical algorithm is briefly described in this section. This algo-
rithm is an improved version of an earlier body-fitted coordinate option in ISIS. '

The electric and magnetic fields are alternately advanced in time in a leap-frog fashion
via Ampere's law and Faraday's law respectively. From the theory of relativity,! we know
that Maxwell's equations can be written in the manifestly covariant form:

[§]
[¥)

aF" jOsY = T (
and

OF‘;(U/O".’\ -+ OF,\,,/O-I‘V + OF.,,\/OJ"‘ = (), (23)



where z# is the four-vector whose first 3 components are the coordinate components ¢ (i =
1.2.3) and whose 4th component is ! = ict; t being the time and ¢ is the speed of light.
We have the following definitions:

0 By, —-B, —if! J!
2 2
FH = —B33 OB %l :§3 and 7 = 53 (24)
2 — D e
£ &2 & 0 ico

where £ and J' are the contravarient vector density components of the electric ficll
and current density respectively and B, is thie covariant component of the magnetic field.
0 = \/gp. where p is the physical charge density. Note that the (appropriately weighted)
sum of the charges on the particles in a cell gives p for that cell and not 5. The metric
tensor g,, = Or/0zx" - 87/0x¥ where 7 is a four-vector with the usual first three spatial
components and ict as an orthogonal fourth component. The quantity ¢#¥ is defined by

I

"¢, = 1 and /g = \/det(g,,). The quantity F),, is given by

1 A
-4 f
Fpu = \/gg;tkgudf (
This tensor car be a complicated function of the physical field components, depending on
the complexity of the metric tensor. For generalized cylinarical coordinates z'(z,r) and
2%(z,7), where z and r are the usual cylindrical coordinates, and the ignorable coordinate
r® = 6, the metric tensor becomes

[R)
(S}
~—

2124+ 1m?% zyzp4+rmr, 000
129+ 1T 222 + 7'22 0 0
20

1

— 92
Guv = . : , (26)

r
0 0 0
where the subscripts 1 and 2 denote differentiation with respect to 2t and 22, respectively.

If the mesh and hence the metric are not functions of time then F,, takes the following
simple form

0 B -B® —iE,
B 0 B --iE o
B2 —B' 0 -iE, |’ (27)
iE, iE, iEy 0

F,, =

where E; are the covariant components of the electric field and B! arc the contravarient
vector density components of the magnetic field. In ISIS the £''s and B''s arc saved in
arrays and the covariant components are constructed as needed from E; = g¢,;€7/\/7 and
B, = ¢i;B’/,/g (the sum over j is from 1 to 3). The metric elements are obtained from
arrays of values of r and 2 on the logical grid using finite differencing of Eq. (20).

The spatial differencing is performed according to a staggered grid which for orthog-
onal coordinates reduces to thy differencing devised by Godfrey.'® The boundary conditicn
for the ficlds are that the tangential electric field vanish on a conductor. This is equivalent



to the requirement that the covariant component not normal to the surface vanish. For
nonorthogonal coordinate systems (g2 # 0) this involves averaging to obtain E, and B,.
Poisson’s equation is not used, but the differencing insures that it is satisfied for all time if
it is satisfied initially,!” provided the accumulated current satisfies the continuity equation

8T+ |or* = 0. (28)

The prescription used to do this is the same as used by Morse and Nielson'® in Cartesian
coordinates, where we note that the quantity actually obtained is J*. ISIS also uses
a pyramid shaped particle to ameliorate the high frequency noisc associated with this
method!?. The particle pusher used is the Boris algorithin.*® Because the velocities are
not needed to obtain the current densities, the particle momenta uscd are the orthogonal
r —z values. In a fashion similar to that used for the field equations the metric elements are
interpolated for each particle from the values of z and r on the grid. The field quantities
are known at time-step n + 1/2. First the contravarient components of the fields are
linearly weighted for each particle. Then the fields are converted to cylindrical orthogonal
cocrdinates by

E.= (218" + 228H)/V9 (29)
E = (r& 4+ /g (30)
Eo=E%/\/g (31)

and similar equations for the magnetic field components.

The position update proceeds by converting to a local cylindrical coordinate system.
The values of z! and z? are used to interpolate to values of z and r for the particle. The
change in the cylindrical coordinate positions Az and Ar are found by the usual prescrip-
tion of converting to a local Cartesian coordinate system. The particles new position on
the 27 — 2 grid is found from the approximate relations

Ar  rpl:

pin+1/2) _ o Un=1/2) _ 22.]7 + !2.] (32)
n 1A Az

22n+1/2) . L2n=1/2) | lJ L _ "‘J , (33)

where J = 273 — =1y, This procedure is iterated twice to insure accuracy.

PARTICLE-IN-CELL SIMULATION RESULTS

Simulations of wakefield generation and subsequent acceleration were performed us-
ing the particle-in-cell algorithm described in the last section. As shown in Eq. (21), large
accelerating gradients are obtained by choosing large ky. Furthermore as discussed in that
scction an amplification of the wakefield due to degeneracy of the lowest order modes is
obtained in the limit kya >> 1. Two simulations performed under these conditions will
be discussed in this section.

The simulation results scale with the drift tube radius, a. The total length of the
simulation is 80a. The parameters of the simulations are as follows: kga = 10; the drive



beam current in linearly ramped from 0 to a peak value of Iy = 20 kA in a distance
L = 6.0qa; the current then falls quickly in a distance of b = 0.2a; the factional ripple depth
is € = 0.2. The number of cells in the axial (z) direction is 2000 and the number of cells
in the radial (r) direction is 25. The time-step is 6t = 0.02a/c.

QR
sa | _ | ]

z/a

Fig. 1 Results of self-consistent particle-in-cell simulation. The upper plot shows the ge-
ometry and snapshots of the beams at three different times. The lower plot is the
momentum of the beams versus axial postion, showin? deceleration of the drive beam
and acceleration of the trailing beam.

In the first simulation shown in Fig. 1, both the drive beam and trailing witness
beam have initial energies of 50 MeV. The upper plot in Fig. 1 shows the geometry and
snapshots of the particle positions at three different times. The bottom plot shows the
longitudina) phase space at the same three times. The drive beam’s radius is initially
0.5a and the witness beamn’s radius is initially 0.25a. The simulations are initialized by
injecting the beams from the left in the region where the drift tube wall is straight and
equal to a. The particles are given an artificially large mass so they do not respond to the
field produced as they are injected. This procedure, eliminates transients associated with
injection through the left boundary and allows the self-consistent calculation of the ficlds
for the proper beam velocity. At the instant of the first snapshot the particles are given
the correct electron mass and allowed to evolve self-consistently as they enter the region



of the rippled guide. The trailing beam has vanishingly small charge and serves only to
sample the wakeficlds generated by the driving beam.

The effects of the wakefield acceleration can be seen in the phase space plot in Fig.
1. For the parameters chosen the first four modes have wavelengths of A; = 1.19a, A\; =
0.96a, A3 = 0.72a, Ay = 0.53. Considering the fall time, we would expect the first 2 or 3
modes to be excited, so that the synchronous wakefield amplitude from Eq. (21) should
be 50-70 MV/m for a = 1 cm. Of course, reducing a by a factor of 2 increases the
wakefield by a factor of 2. The estimate of the wakefield obtained in the simulation from
the acceleration of the trailing beam is 50 MV /m for @ = 1 c¢m, in good agreement with
the analysis. Furthermore, as can be seen in the phase space plot, the wakefield is nearly a
single mode with wavelength, A & a, also as predicted. Furthermore, the transformer ratio
as secn by comparing the maximum deceleration in the drive beam with the maximum
acceleration of the drive beam is about 5-6 as predicted.

As mentioned earlier, the synchronous transverse waxke vanishes (to order 1/42). This
1s casily seen from the Fourier transform of Faraday’s law.

E =g, (34)

w

When the phase velocity of the wave (w/k) is the speed of light, ¢, E, = By and the
transverse force on an ultrarelativistic particle vanishes. However, there are as mentioned
earlicr, nonsychronous wakefields generated. From Eq. (12), we sce that they are first
order in €. For modes, such that kya >> p, we find that the phase velocity of the waves
is approximately —c¢. These waves move quickly backward through the beams and provide
no net energy loss or gain to the bearms. However, even though these modes are not
syuchronous, they can have an effect cn wakefield accelerators. Firstly, from Eq. (34),
there can be a instantaneous net radial force on the beams because w/k 3# ¢. The effect
is to wiggle the beam particles up and down with no net encrgy gain. Though this effect
may not drive the beams into the wall, it niay increase the transverse emittance and cause
synchrotron radiation at higher encrgies. This transverse motion, is secn in the snapshots
of the particle positions in Fig. 1. The effect is almost unmeasurable for the driving beam,
but noticeable for the trailing beam. Secondly, because the nonsynchronous wakeficld is
first order in ¢, it will be roughly a factor of 1/¢ larger than the accclerating field. Thus
this field may become a limiting factor in the accelerating gradient obtainable becausc the
waveguide wall may breakdown from this field

There appears to be a filamentation instability beginning to be scen in the drive
beam in the upper plot in Fig. 1. Though it has not been analyzed, this instability is
probably analogous to the Weibel instability obscrved in plasma wakefield stidies,>® with
the slow wave structure of the rippled guide serving the function of the pl. sma. Other
simulations show this instability to be a function of the drive beam energy and current.
Figure 2 shows the results of a simulation identical to the one in Fig. 1 except the drive
beern has an initial energy of 20 MeV. The filamentation of the drive beam is significantly
worse in this case. However, as shown in the analysis, the wakefield is independent of the
radial profile of the drive beam. Thus as shown in Fig. 2, the acceleration and transverse
coffects on the trailing beam by the filamentation of the drive beam are unmeasurable. This



is rather different than the case of the plasm~ wakeficld accelerator, where filamentation
of the drive bearn imposed strong filamentation in the trailing beam.®
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Fig. 2 Simulation results for same parameters as in Fig. 1, except for 20 MeV driving beam
energy instead of 50 MeV. Filamentation of the drive beam is more pronounced, but
the trailing beam is unaffected by the filamentation.

SUMMARY AND CONCLUSIONS

Analysis and simulation of wakefield generation and acceleration indicate that inter-
esting accelerating gradients may be obtained. The accelerating field is found to depend
linearly on the peak drive beam current for linearly ramped beams and quadratically on
the fractional ripple depth, e. Improvements in the acceleratinz field can be obtained by
increasing the ripple wavenumber, ky. This is stronger than linear dependence, becausc
the umplitude for a single mode scales as ko as shown in Eq. (21) and more modes will
be degenerate. The field is independent of the radial d'stribution of the drive current, and
though the system may be subject to a filamentation instability for sufficiently long drive
beams, this property makes the accelerating field insensitive to the filamentation effect.
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